

Kruger Contract – ANITA Mox Process for Side Stream Treatment

Department of Water Management March 7, 2013

Department of

Water Management

Jordan Lake Rules Impacts for South Durham WRF

Total Nitrogen

Current Limits - 334,704 lbs/year

5.5 mg/l at permitted flows (20 MGD)

12.57 mg/l at current flows (8.75 MGD)

2018 Limits* - 185,345 lbs/year

3.0 mg/l at permitted flows

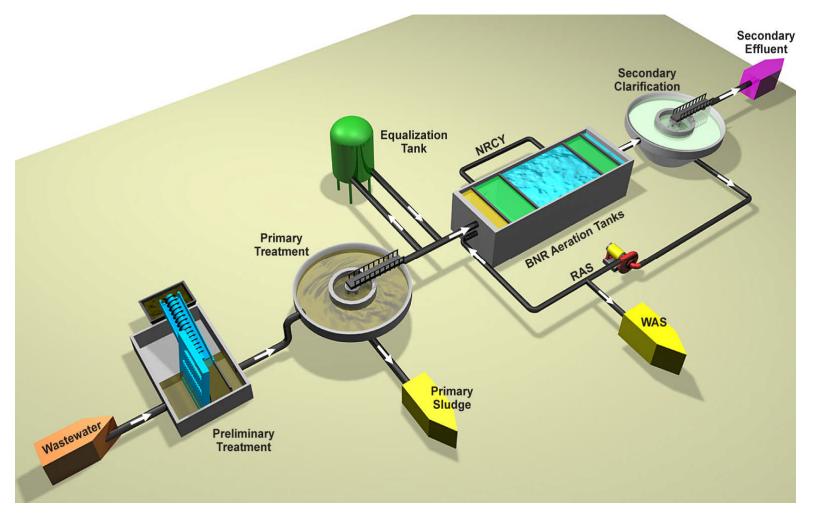
6.95 mg/l at current flows

2012 annual average discharge – 9.9 mg/l or 263,844 lbs at 8.75 MGD (79% of current permitted load)

^{*} Based on Cape Fear Basin Water Quality Model using data 1997 - 2001

Scope of WRF Master Plans

- 20-year planning period
- Long-term Compliance Evaluation to look beyond 20 years
- Near Term Compliance and Smart Infrastructure investments to meet future regulations
- Falls Lake Rules which impact NDWRF
- Jordan Lake Rules which impact SDWRF


General Approach

South Durham Capital Upgrades

Funding Year	Project Name	Project Costs
FY11-12	Nutrient Analyzers and Weir Covers	\$711,284
FY12-13	Chemical Systems and Nutrient Related Improvements	\$4,260,000
FY12-13	Sidestream Annamox Treatment Facilities	\$2,060,100
FY13-14	Odor Control and Influent Junction Box Improvements	\$405,000
FY13-14	Stagecoach Road Pump Station Improvements	\$378,000
FY13-14	Fine Bubble Diffuser Upgrades	\$1,755,000
FY14-15	Tertiary Filter Media Replacement	\$675,000
FY14-15	Equalization Facilities	\$2,025,000
FY14-15	Secondary Clarifier Improvements	\$3,138,750
FY15-16	Dewatering Capacity Improvements	\$2,646,000
FY15-16	Influent Screening and Grit Removal Facilities	\$9,720,000
FY 15-16	Ultraviolet Disinfection System Replacement	\$4,590,000
FY 20-21	Primary Clarification Facilities	\$7,695,000
FY 20-21	Master Plan Update 2020	\$500,000
FY 20-21	FOG Receiving Station	\$3,510,000
FY 20-21	Dewatering Facility Equipment Replacement	\$5,292,000
FY 20-21	Struvite Recovery Facilities	\$4,590,000

Typical Wastewater Process

What is a Side Stream?

- Any process flow resulting from the treatment of biosolids that flows back into the liquid treatment train
- Examples
 - Belt Filter Press filtrate (highest N)
 - Gravity Belt Thickeners filtrate
 - Filter backwash

Site	Percent of Total Influent Nitrogen Load	Percent of Total Influent Phosphorus Load	
NDWRF	20%	26%	
SDWRF	21%	30%	

Slide 6

Taylor, Ronald L., 4/1/2011 TRL1

TRL2 Do we think filter backwash needs SS treatment at Durham?

Why are some items red? Taylor, Ronald L., 4/1/2011

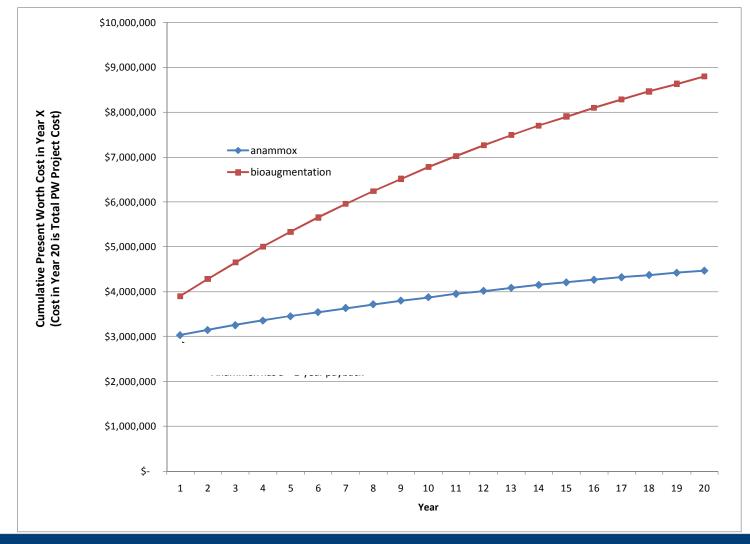
What is Side Stream Treatment?

- Used to achieve nutrient removal objectives
- More cost effective for nutrient removal
- Nutrient recovery for potential reuse
- Typical side stream treatment options:
 - Chemical phosphorus precipitation
 - Struvite recovery
 - Bioaugmentation
 - Nitritation/denitritation
 - Nitritation/deammonification (Annamox)

Why Consider Side Stream Treatment?

- Process Stability
- Cost Effectiveness

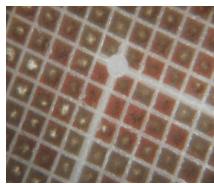
Category/Parameter	Units	Mainstream (5-stage BNR + Tertiary Denitrification)	Bioaugmentation	AnitaMox
Cost per pound N removed (capital)	\$/lb	\$1.63	\$0.82	\$0.74
Cost per pound N removed (O&M)	\$/lb	\$1.68	\$1.32	\$0.39
Total	\$/lb	\$3.31	\$2.14	\$1.13



Summary of Sidestream Nitrogen Removal Evaluation

- Total capital investment for Durham for ANITA Mox and bioaugmentation comparable
- ANITA Mox has lower O&M costs providing longterm cost savings
- Demonstrate success with ANITA Mox at one plant, implement at the other soon thereafter
- Kruger offering financial incentives to fast-track this project

ANITA Mox Evaluation



Schematic of ANITA Mox Internal Components

- ANITA™ Mox is an application of the MBBR technology
- Bacteria grow as a biofilm
- Single-pass reactor
- No clarifier needed
- Dissolved Oxygen between
 1.0 2.5 mg/L
- Nitritation and deammonification occur in same reactor

General Terms of Contract

- Media, Aeration/Mixing equipment, Controls
- Startup assistance, on going support and training
- Process Guarantee and Standard equipment warranty
- Liquidated damages for process upsets
- Termination clauses if farming agreement becomes onerous.

Contract for Farming Media

- Kruger needs a stateside source of seeded media.
- Kruger wants a local municipality that it can use to seed media for future installations.
- Kruger equipment and process is offered with a process guarantee that will discount final payment if plants do not achieve the savings proposed.
- Kruger would be liable for process interruptions which require the WRF to spend more on the mainstream treatment of nitrogen.
- Purchase price discount ~25%

Questions